1. Let f be a differentiable function with $f(2,5)=9$ and $\nabla f(2,5)=\langle 1,-3\rangle$.
(a) Find the directional derivative of f at $(2,5)$ in the direction of the point $(1,7)$.
(5 pts)
The unit vector in the direction of $(1,7)$ is $\left\langle-\frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}}\right\rangle$. Dot with the gradient to get the directional derivative is $\left\langle-\frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}}\right\rangle \cdot\langle 1,-3\rangle=-\frac{7}{\sqrt{5}}$.
(b) Find a reasonable approximation for $f(1.9,5.1)$.
$f(1.9,5.1) \approx f(2,5)+f_{x}(2,5)(1.9-2)+f_{y}(2,5)(5.1-5)=$ $9+(1)(-.1)+(-3)(.1)=8.6$
(c) Let $z=f\left(4 e^{t}-s, \sin (s t)+5\right)$. Find $\partial z / \partial t$ when $s=2, t=0$.

Let $x=4 e^{t}, y=\sin (s t)+5$. By the chain rule,
$\partial z / \partial t=f_{x}(x, y)\left(4 e^{t}\right)+f_{y}(x, y)(s \cos (s t))$. At $s=2, t=0$ we have that
$x=2, y=5$ so $\partial z / \partial s=f_{x}(2,5)(4)+f_{y}(2,5)(2)=1(4)+(-3)(2)=-2$.
2. Evaluate the limit or show that it does not exist.

$$
\begin{equation*}
\lim _{(x, y) \rightarrow(0,0)} \frac{x y^{4}-x^{4} y}{x^{5}+y^{5}} \tag{10pts}
\end{equation*}
$$

Along the paths $x=0, y=0, y=x$ the limit is 0 , however along $y=2 x$ the limit is $\frac{14}{33}$ so the limit does not exist.
3. Find the absolute maximum and minimum of $f(x, y, z)=6 x+2 y+z^{2}$ on the paraboloid $3 x^{2}+y^{2}+4 z^{2}=100$.
This is a closed and bounded region so there is a max and min. There is no interior so just check for critical points on the paraboloid using Lagrange multipliers. The Lagrange multiplier equations are $6=\lambda 6 x, 2=\lambda 2 y, 2 z=\lambda 8 z, 3 x^{2}+y^{2}+4 z^{2}=100$. The first and second equations simplify to $x=1 / \lambda, y=1 / 2 \lambda$ so $x=y$. The third equation gives us that $z=0$ or $\lambda=1 / 4$. Consider each case and use the fourth equation to get that there are 4 critical points: $(4,4,3),(4,4,-3),(5,5,0)$, and $(-5,-5,0)$. Plugging these into f we get $f(4,4,3)=41, f(4,4,-3)=41, f(5,5,0)=40$, $f(-5,-5,0)=-40$ so the maximum is 41 and the minimum is -40 .
4. Compute $\int_{C}\left(e^{x y}+x y e^{x y}\right) d x+\left(x^{2} e^{x y}\right) d y$ where C is the curve consisting of the two line segments from $(0,0)$ to $(3,3)$ and from $(3,3)$ to $(7,0)$.
This can be done two different ways. If $F=\langle P, Q\rangle=\left\langle\left(e^{x y}+x y e^{x y}\right),\left(x^{2} e^{x y}\right)\right\rangle$ then $P_{y}=2 x e^{x y}+x^{2} y e^{x y}, Q_{x}=2 x e^{x y}+x^{2} y e^{x y}$ so F is conservative. It has
potential function $f(x, y)=x e^{x y}$ so by the fundamental theorem of line integrals, the integral is $f(7,0)-f(0,0)=7$.
The other way to do this is to close the region with the line segment from $(0,0)$ to $(7,0)$ and use Green's theorem. The integral over the whole triangle is 0 by Green's Theorem as $Q_{x}-P_{y}=0$. The curve from $(0,0)$ to $(7,0)$ can be parametrized as $x=t, y=0,0 \leq t \leq 7, d x=d t, d y=0$ so the integral over this line segment is $\int_{0}^{7} 1 d t=7$. Combine these two facts to get that the integral is 7 .
5. Let D be a region on the $x y$-plane. Let S be the part of the plane $-6 x+2 y+2 z=7$ which lies above or below the region D, (i.e. points on the plane $-6 x+2 y+2 z=7$ with (x, y) in D). If the area of S is 14 , find the area of D.
(10 pts)
The surface S can be parametrized as $r(x, y)=\langle x, y,(7 / 2)+3 x-y\rangle$ where the possible (x, y) values are exactly those in D. Then $r_{x} \times r_{y}=\langle-3,1,1\rangle$ so $\left|r_{x} \times r_{y}\right|=\sqrt{11}$. Using the surface area formula we get that the surface area of S is $A(S)=\iint_{D} \sqrt{11} d A=\sqrt{11} A(D)$ where $A(D)$ is the area of D. Set $A(S)=14$ and solve for $A(D)$ to get $A(D)=14 / \sqrt{11}$.
6. Let S be the boundary of the region which is both inside the sphere $x^{2}+y^{2}+z^{2}=2$ and above the cone $z=\sqrt{x^{2}+y^{2}}$. Find $\iint_{S} F \cdot d \mathbf{S}$ where $F(x, y, z)=\left\langle e^{\cos (y z)}, 2 y z+7 x^{3}, 2 z^{2}\right\rangle$.
Use the divergence theorem. The divergence of F is $6 z$. The region can be set up in either cylindrical or spherical coordinates and two set-ups are the following:

$$
\begin{gathered}
\int_{0}^{2 \pi} \int_{0}^{1} \int_{r}^{\sqrt{2-r^{2}}} 6 z r d z d r d \theta \\
\int_{0}^{2 \pi} \int_{0}^{\pi / 4} \int_{0}^{\sqrt{2}} 6 \rho^{3} \sin (\phi) \cos (\phi) d \rho d \phi d \theta
\end{gathered}
$$

The value of the integral is 3π.
7. Find $\int_{C} F \cdot d r$ where C is the intersection of the plane $z=3-3 x+2 y$ and the cylinder $x^{2}+y^{2}=1$ oriented clockwise when viewed from above and $F(x, y, z)=\left\langle y^{2}+\sin \left(x^{2}\right), x z, 5 x\right\rangle$.
Use Stokes Theorem with S the part of the plane which is inside the cylinder, oriented down. S can be parametrized as $r(x, y)=\langle x, y, 3-3 x+2 y$ where $x^{2}+y^{2} \leq 1$. Then $r_{x} \times r_{y}=\langle 3,-2,1\rangle$ and we change this to $\langle-3,2,-1\rangle$ to match the orientation. The curl of F is $\langle-x,-5, z-2 y\rangle$ and on S this is $\langle-x,-5,3-3 x\rangle$. The dot product of the curl and the normal vector is $-13+6 x$ so the integral is $\iint_{x^{2}+y^{2} \leq 1}-13+6 x d A$. To evaluate, switch to polar to get $\int_{0}^{2 \pi} \int_{0}^{1}-13 r+6 r^{2} \cos (\theta) d r d \theta=-13 \pi$.

